
The good, the bad,
the native

Gregorio Palamà

Gregorio Palamà

 Native
and
 Cloud
 Native

“Cloud-native technology is when
engineers and software people utilize
cloud computing to build tech that’s faster
and more resilient, and they do that to
meet customer demand really quickly.”

Priyanka Sharma, CNCF’s General Manager

https://learn.microsoft.com/en-us/dotnet/architecture
/cloud-native/definition

https://aws.amazon.com/what-is/cloud-native/

https://cloud.google.com/learn/what-is-cloud-native

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://aws.amazon.com/what-is/cloud-native/
https://cloud.google.com/learn/what-is-cloud-native

Microservices Containers Orchestration

Scalability

Cloud-native
architectures employ
infrastructure
automation, helping to
eliminate downtime
due to human error.
You can balance load
based on demand,
allowing you to
optimize cost and
performance better.

Lower costs

A streamlined software
delivery process
reduces the costs of
delivering new updates
and features.
Cloud-native
applications also allow
for sharing resources
and on-demand
consumption,
significantly lowering
your operating costs.

Higher availability

Cloud-native
architectures provide
high availability and
reliability as they
reduce operational
complexity, simplify
configuration changes,
and offer autoscaling
and self-healing.

Cloud-native applications make the
most of modern infrastructure's
dynamic, distributed nature to achieve
greater speed, agility, scalability,
reliability, and cost efficiency.

Smaller
memory
footprint

Less CPU
consumption

Lower startup
time

 The
JVM
microservices
 frameworks
 ecosystem

Demo

 “Those bastards
 out there want more
memory and I have just
a few resources, how do
 you think I can scale or
 lower the costs?”
 - Angel Eyes, The Bad -

GraalVM

The JVM is an abstraction of an
underlying actual machine that
interprets the bytecode generated by
the compilation of a code supported by
the JVM itself.

0101
1010
0101

HotSpot

Bytecode

Binary code

Interpreter /
JIT Compiler

GC

Memory
Management

Class Loader

Native Method
Libraries

Thread
Management

Interpreter

● Slow execution
● Interprets

bytecode and
collects profiling
informations

● Fast startup

C1

● JIT
● Compiles code

when it gets
frequently
executed

● Continue collecting
profiling
information

● Fast warmup

C2

● JIT
● Compiles and

optimizes code
when it's executed
often enough and
reaches certain
thresholds

● Uses profiling
informations

● High peak
performance

HotSpot

Polyglot VM

● Runtimes for many
languages: Python,
Ruby, Javascript,
etc.

Graal compiler

● C2 implementation
● Various

optimizations
● Removes

unnecessary
object allocations
on the heap

Native image

● AOT
● Compiles to native

platform
executables

Graal

HotSpot VM

HotSpot VM

Compiler Interface

C1 C2

Graal VM

HotSpot VM

Compiler
Interface

C1 Graal

JVMCI

HotSpot VM

HotSpot VM

Compiler Interface

C1 C2

Graal VM

HotSpot VM

Compiler
Interface

C1 Graal

JVMCI

 Ahead
Of
 Time

Application

Libraries

JDK

Substrate VM

Point-to analysis

Run initializations

Heap snapshotting

Code in Text
section

Image heap in
Data section

Input Build Output: native
executable

AOT
Compilation

Image Heap
Writing

Demo - Native

Smaller
memory
footprint

Less CPU
consumption

Lower startup
time

Scalability Lower costs Higher availability

 “I... I will sleep
 peacefully...
because I know
 that the native...
 is watching over me”
 - Blondie, The Good -

 Native
building
 drawbacks

Native image takes a lot of time and
needs more resources than bytecode
generation.

It is difficult to debug the native
executable.

Native image generates metadata
performing static analysis under a
closed-world assumption. Thus, some
dynamic features require additional
configuration: reflection, dynamic
proxying, etc.

The Tracing Agent can be used to
easily gather metadata and prepare
configuration files.

JVM peak performance can only be
obtained by optimizing the compilation

Some libraries does not provide good
enough reachability metadatas. Some
include dependencies that we may
need to manually exclude.

It is better to avoid shaded libraries.

 “When you
go native,
 you go native”
 - Tuco, The Ugly Native -

“Cloud-native technology is when
engineers and software people utilize
cloud computing to build tech that’s faster
and more resilient, and they do that to
meet customer demand really quickly.”

Priyanka Sharma, CNCF’s General Manager

Start using
GraalVM native
image

Use the Tracing
Agent

Use
testcontainers

https://www.graalvm.org/22.0/reference-manual/nativ
e-image/

https://www.graalvm.org/latest/reference-manual/nati
ve-image/metadata/AutomaticMetadataCollection/

https://docs.spring.io/spring-boot/docs/current/refere
nce/html/native-image.html

https://quarkus.io/guides/building-native-image

https://www.graalvm.org/22.0/reference-manual/native-image/
https://www.graalvm.org/22.0/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://quarkus.io/guides/building-native-image

 Thank you

