G

The good, the bad,
the native

Gregorio Palama

G

U

Gregorio Palama

<>

GDG /; .\

Pescara a

Ealatform

Expert

Natlve

R
Py - \ . 5 .

“Cloud-native technology is when
engineers and software people utilize

cloud computing to builc
and more resilient, and

meet customer demanc

tech that's faster
they do that to
really quickly.”

Priyanka Sharma, CNCF’s General Manager

https://learn.microsoft.com/en-us/dotnet/architecture
/cloud-native/definition

https.//aws.amazon.com/what-is/cloud-native/

https.//cloud.google.com/learn/what-is-cloud-native

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://aws.amazon.com/what-is/cloud-native/
https://cloud.google.com/learn/what-is-cloud-native

Microservices

Containers

Orchestration

Scalability

Cloud-native
architectures employ
infrastructure
automation, helping to
eliminate downtime
due to human error.
You can balance load
based on demand,
allowing you to
optimize cost and
performance better.

L. ower costs

A streamlined software
delivery process
reduces the costs of
delivering new updates
and features.
Cloud-native
applications also allow
for sharing resources
and on-demand
consumption,
significantly lowering
your operating costs.

Higher availability

Cloud-native
architectures provide
high availability and
reliability as they
reduce operational
complexity, simplify
configuration changes,
and offer autoscaling
and self-healing.

Cloud-native applications make the
most of modern infrastructure's
dynamic, distributed nature to achieve
greater speed, agility, scalability,
reliability, and cost efficiency.

Smaller
memory Less CPU Lower startup
footprint consumption time

X\

Y I

MMMMMMMMMM

The
JVM

microservices
frameworks
ecosystem

“Those bastards
out there want more
memory and | have just
a few resources, how do
you think I can scale or

lower the costs?”

- Angel Eyes, The Bad -

N A
A

The JVM is an abstraction of an
underlying actual machine that
interprets the bytecode generated by
the compilation of a code supported by
the JVM itself.

HotSpot

GC
Interpreter /
JIT Compiler Thread
Management
) PSSP [Memory

— Management

Class Loader

Native Method
Libraries

-

1
Y

0101
1010
0101

Binary code

X\

Interpreter

Slow execution
Interprets
bytecode and
collects profiling
informations
Fast startup

C1

o JIT
e Compiles code

when it gets
frequently
executed

e (Continue collecting

profiling
information
Fast warmup

HotSpot

C2

o JIT

e Compilesand
optimizes code
when it's executed
often enough and
reaches certain
thresholds

e Uses profiling
informations

e High peak
performance

X\

Polyglot VM

Runtimes for many
languages: Python,
Ruby, Javascript,
etc.

Graal compiler

e (2 implementation
e Various
optimizations

e Removes

unnecessary
object allocations
on the heap

Graal

Native image

e AOT
e Compiles to native

platform
executables

HotSpot VM

C1 [C2

Graal VM

Compiler Interface

C1

\

Graal

HotSpot VM

Compiler
| Interface

_

IVMCI

HotSpot VM

HotSpot VM

C1 [C2

Graal VM

Compiler Interface

\

C1

HotSpot VM

Compiler
| Interface

Jjvmcl

HotSpot VM

Output: native

Input Build executable
Application |—— v o
Point-to analysis Compilation | Code in Text
Libraries —> v section
Run initializations -
JDK — > { i | Image heap in
Data section

Substrate VM

Heap snapshotting

K |

-

Demo - Native

Smaller
memory Less CPU Lower startup
footprint consumption time

X\

X\

Scalability

Lower costs

Higher availability

“I... I will sleep
peacefully...
because | know
~ that the native...

IS watching over me”

T\

- Blondie, The Good -

oo’

‘W Native
iy building

drawbacks

Native image takes a lot of time and
needs more resources than bytecode
generation.

It is difficult to debug the native
executable.

Native image generates metadata
performing static analysis under a
closed-world assumption. Thus, some
dynamic features require additional
configuration: reflection, dynamic
proxying, etc.

The Tracing Agent can be used to
easily gather metadata and prepare
configuration files.

JVM peak performance can only be
obtained by optimizing the compilation

Some libraries does not provide good
enough reachability metadatas. Some
include dependencies that we may
need to manually exclude.

It is better to avoid shaded libraries.

. “When you
\ go native,
. you go native”

- Tuco, The Yghy Native -

“Cloud-native technology is when
engineers and software people utilize

cloud computing to builc
and more resilient, and

meet customer demanc

tech that's faster
they do that to
really quickly.”

Priyanka Sharma, CNCF’s General Manager

Start using
GraalVM native
image

X\

Use the Tracing
Agent

Use
testcontainers

https://www.graalvm.org/22.0/reference-manual/nativ
e-image/

https://www.graalvm.org/latest/reference-manual/nati
ve-image/metadata/AutomaticMetadataCollection/

https://docs.spring.io/spring-boot/docs/current/refere
nce/html/native-image.htmi

https://quarkus.io/guides/building-native-image

https://www.graalvm.org/22.0/reference-manual/native-image/
https://www.graalvm.org/22.0/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://www.graalvm.org/latest/reference-manual/native-image/metadata/AutomaticMetadataCollection/
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://quarkus.io/guides/building-native-image

Thank you

