
Spring Security:
Architecture Principles

Daniel Garnier-Moiroux

Spring I/O, 2024-05-30

Daniel
Garnier-Moiroux

Software Engineer @ Broadcom

 Spring + Tanzu

 @Kehrlann@hachyderm.io
 @Kehrlann

 https://garnier.wf/

 github.com/Kehrlann/
 contact@garnier.wf

https://garnier.wf/
mailto:contact@garnier.wf

Spring Security

😬 🤯 🤕 😱 �

I have a complex scenario. What could be wrong?

You need an understanding of the technologies you intend to use before you can
successfully build applications with them. Security is complicated. Setting up a simple
configuration […] is reasonably straightforward.

However, if you try to jump straight to a complicated [configuration], you are almost
certain to be frustrated. […] So you need to take things one step at a time.

source: Spring Security reference docs, FAQ

Spring Security

😬 🤯 🤕 😱 �

Spring Security

❤ ❤ ❤ ❤ ❤

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Demo
🍃🔐 A basic, secured app

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Spring Security Filter
1 public void doFilter(

2 HttpServletRequest request,

3 HttpServletResponse response,

4 FilterChain chain

5) {

6 �� 1. Before the request proceeds further (e.g. authentication or reject req)

7 �� ���

8

9 �� 2. Invoke the "rest" of the chain

10 chain.doFilter(request, response);

11

12 �� 3. Once the request has been fully processed (e.g. cleanup)

13 �� ���

14 }

Demo
⛔ Our first filter

A detailed example

CsrfFilter.java

Cross
Site
Request
Forgery

Protection

1 <form ���>

2 ���� visible inputs ���

3 <input

4 type="hidden"

5 name="_csrf"

6 value="yyy" ��

7 ��form>

A "real" example

CsrfFilter.java

Other filters?

Static, on startup: DefaultSecurityFilterChain

Dynamic, at runtime:

1 logging.level:

2 org.springframework.security: TRACE

Recap
1. Basic interface Filter , specifically OncePerRequestFilter

1. Takes HttpServletRequest, HttpServletResponse

2. Reads from request

1. Sometimes writes to Response

2. Sometimes does nothing!

3. If request is "secure", calls f�lterChain.doFilter(���)

2. Filters are registered SecurityFilterChain

1. Order matters

2. Before AuthorizationFilter.class

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Authentication objects

Spring Security produces Authentication objects. They are used for:

Authentication (authn): who is the user?

Authorization (authz): is the user allowed to perform XYZ?

Vocabulary

Authentication: represents the user. Contains:

Principal: user "identity" (name, email…)

GrantedAuthorities: "permissions" (roles , …)

Vocabulary (cont’)

Authentication also contains:

.isAuthenticated(): almost always true

details: details about the request

(Credentials): "password", often null

SecurityContext
Thread-local

Not propagated to child

threads

Cleared after requests is

processed

What’s the most
common
Authentication

implementation?

Good practice

DO NOT

Use UsernamePasswordAuthenticationToken everywhere

INSTEAD

Create your own Authentication subclasses

Remember our filter?
1 public void doFilter(

2 HttpServletRequest request,

3 HttpServletResponse response,

4 FilterChain chain

5) {

6 �� 1. Before the request proceeds further (e.g. authentication or reject req)

7 �� ���

8

9 �� 2. Invoke the "rest" of the chain

10 chain.doFilter(request, response);

11

12 �� 3. Once the request has been fully processed (e.g. cleanup)

13 �� ���

14 }

More like this
1 public void doFilter(

2 HttpServletRequest request,

3 HttpServletResponse response,

4 FilterChain chain

5) {

6 �� 1. Decide whether the f�lter should be applied

7

8 �� 2. Apply f�lter: authenticate or reject request

9

10 �� 3. Invoke the "rest" of the chain

11 chain.doFilter(request, response);

12

13 �� 4. No cleanup

14 }

Demo
🤖 Robot wants Auth

Recap
1. Some filters produce an Authentication

1. Read the request ("convert" to domain object)

2. Authenticate (are the credentials valid?)

3. Save the Authentication in the SecurityContext

4. Or reject the request when creds invalid

2. There’s more than just UsernamePasswordAuthenticationToken !

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Authentication

Authentication objects are both:

The result of a authentication action

An authentication request

Muahaha I lied 😈

Demo
� Daniel’s edge-case

Recap

1. Authentication is both an auth request and a successful auth result

2. AuthenticationProvider validate credentials

1. Operates only within the "auth" domain (no HTTP, HTML, …)

3. AuthenticationProvider leverages Spring Security infrastructure

Contents
1. 🤹 Demo: a baseline

2. 📚 The theory

1. 🛂 Filter - HTTP building block

2. 🪪 Authentication - the "domain language"

3. ⚙ AuthenticationProvider - to authenticate

4. 🧰 Conf�gurers - wiring things together

Wrapping up

1. Filter for security decisions on HTTP requests

2. Authentication is the domain language of Spring Security

3. AuthenticationProvider to validate credentials

4. Filter + AuthenticationProvider for custom login

Repo:

 https://github.com/Kehrlann/spring-security-the-good-parts

Reach out:

 @Kehrlann@hachyderm.io

 @Kehrlann

 https://garnier.wf/

 contact@garnier.wf

https://github.com/Kehrlann/spring-security-the-good-parts
https://garnier.wf/
mailto:contact@garnier.wf

😁 Thank you!

