
JUERGEN HOELLER
@springjuergen

SPRING FRAMEWORK 6.2
Core Container Revisited

● Autowiring Algorithm
○ Autowiring by Type+Qualifier
○ Autowiring by Bean Name
○ Primary vs. Fallback Beans

● Container Initialization
○ Singleton Locking
○ Background Initialization
○ Lifecycle Management

Agenda

Autowiring Algorithm

Autowiring by Type+Qualifier

● Spring’s general autowiring algorithm has several steps

a. determine all beans which match the given type
b. select the beans which match the given qualifiers
c. for non-unique matches, identify primary candidate
d. if still not unique, match qualified name against bean name

Autowiring by Type+Qualifier

@Bean

public DataSource commonDataSource() {

 ...

}

@Bean

public MyRepository repository(DataSource ds) { // type only

 ...

}

Autowiring by Type+Qualifier

@Bean @MyQualifier

public DataSource commonDataSource() {

 ...

}

@Bean

public MyRepository repository(@MyQualifier DataSource ds) {

 ...

}

Autowiring by Bean Name

● As of 6.2, there is a “fast path” for bean name matches
● Optimistic assumption: check for bean name match first

● Parameter/field name to match bean name convention
○ or explicit @Qualifier(...) value

● Otherwise, the standard autowiring algorithm applies
○ e.g. bean name mismatch or qualifier/primary conflict

Autowiring by Bean Name

@Bean

public DataSource commonDataSource() {

 ...

}

@Bean

public MyRepository repository(DataSource commonDataSource) {

 ...

}

Autowiring by Bean Name

@Bean

public DataSource commonDataSource() {

 ...

}

@Bean

public MyRepository repository(
 @Qualifier("commonDataSource") DataSource dataSource) {

 ...

}

Primary vs. Fallback Beans

● As of 6.2, there is also the notion of fallback beans
● Primary beans vs. regular beans vs. fallback beans

● @Primary beans override regular beans
○ to be selected in case of multiple type matches

● Regular beans override @Fallback beans
○ regular bean selected if other matches are fallback beans

Primary vs. Fallback Beans

@Bean @Primary

public DataSource commonDataSource() { // primary among type

 ...

}

@Bean

public DataSource otherDataSource() {

 ...

}

Primary vs. Fallback Beans

@Bean

public DataSource commonDataSource() { // only non-fallback

 ...

}

@Bean @Fallback

public DataSource otherDataSource() {

 ...

}

Container Initialization

Singleton Locking

● Common singleton initialization lock
● On startup: initializing all non-lazy singletons

● Order of registration + bean dependency structure
○ as well as explicit depends-on declarations

● Inverse order on shutdown
○ last created, first destroyed

Singleton Locking

● As of 6.2, lenient locking with tryLock fallback
● Bonus: Virtual Threads friendly, using ReentrantLock

● Still consistent singleton locking in main bootstrap thread
○ just lenient for other threads while main thread holds lock

● Avoiding immediate deadlock risk
○ in particular for unexpected side interactions on startup

Background Initialization Options

● Traditionally, Spring uses a single startup thread
● Consistent initialization of dependent singletons

● Lenient locking makes it feasible to use multiple threads
○ a common feature request over many years

● Multiple threads lead to less predictable startup behavior
○ still recommended: stay single-threaded by default

Background Initialization Options

● Asynchronous initialization within specific bean classes
● Custom internal handling of execution/completion state

● E.g. asynchronous JPA bootstrapping since 4.3
○ *EntityManagerFactoryBean.setBootstrapExecutor

● Can benefit from domain-specific characteristics
○ lazy interaction with EntityManagerFactory proxy

Declarative Background Initialization

● As of 6.2, background initialization of individual beans
● Typically in combination with @Lazy injection points

● @Bean(bootstrap=BACKGROUND)
○ uses common bootstrap executor at BeanFactory level

● Special @DependsOn semantics
○ forces dependency initialization in main thread first

Declarative Background Initialization

@Bean(bootstrap=BACKGROUND)
public DataSource commonDataSource() {
 ...
}

@Bean
public MyRepository repository(@Lazy DataSource ds) {
 ...
}

Lifecycle Management

● Spring-managed start/stop lifecycle
● Lifecycle and SmartLifecycle interfaces

● Auto-startup of specific lifecycle beans
○ after instantiating all non-lazy singletons

● Graceful parallel stopping on shutdown
○ before any destroy methods are invoked

Lifecycle Management

● Also part of the arrangement: pause/restart
● E.g. for snapshots (CRaC) or reconfiguration

● Supported by message listener containers etc.
○ temporarily stopping message delivery

● As of 6.1, also supported by executors/schedulers
○ pausing further tasks and triggers

Customizable Lifecycle Management

● A challenge: order of start/stop callbacks
● Lifecycle phase and interdependency order

● Phase configurable for every SmartLifecycle bean
○ within same phase, depends-on taken into account

● As of 6.2, executors/schedulers use own default phase
○ Integer.MAX_VALUE/2 with room for earlier stopping

Customizable Lifecycle Management

@Bean

public ThreadPoolTaskExecutor taskExecutor() {
 …
 executor.setPhase(...);
 …
}

@Bean

public ThreadPoolTaskScheduler taskScheduler() {
 …
 scheduler.setPhase(...);
 …
}

Core Container Revisited

New in Spring Framework 6.2

● Fast shortcut autowiring by name
● Fallback bean definitions
● Declarative background initialization
● Revised lifecycle phases

● Currently available: 6.2 M3
● 6.2 GA in November 2024

@springjuergen
JUERGEN HOELLER

