
It’s all in the mix!
Producing production-ready apps with Spring Boot

Intro

● Many things go into
building applications
○ Architecture
○ Business logic
○ Persistence
○ Security
○ APIs

● This talk isn’t about that…
https://upload.wikimedia.org/wikipedia/

commons/0/0e/Musician.jpg

Production-Ready Applications

● Need more than that
○ Performance tuning & caching
○ Packaging
○ Observability

● Should integrate with
framework features
○ Custom autoconfiguration
○ Error handling in the web tier

https://commons.wikimedia.org/wiki/File:

Mixing_and_mastering.jpg

Error Handling in the Web Tier

Web Error Handling

● Response for uncaught and framework exceptions
● Default: white-label error for uncaught

● Common approach:
@(Rest)ControllerAdvice with @ExceptionHandlers

● Spring 6.0+ also supports RFC 7807 ProblemDetail

ControllerAdvice &
ExceptionHandler
● @ExceptionHandler also called for

nested cause
○ any level, since Spring 5.3

● Spring considers all handler methods
● No match?

Then try cause, repeatedly

Demo

Further Notes

● Extend DefaultErrorAttributes to resolve errors
● Extend ResponseEntityExceptionHandler

for RFC 7807 support
○ Handles common Spring MVC exceptions
○ Hides validation errors, though…

● For more control, consider Wim Deblauwe’s
Error Handling Spring Boot Starter

https://youtu.be/azTAKKCtNXE?si=bXhjAqbaCoe2NYim&t=404
https://wimdeblauwe.github.io/error-handling-spring-boot-starter/current/

HTTP Caching

HTTP Caching

● Part of HTTP spec since 1.0
● Aimed at browsers originally,

also relevant to API clients

● Widely supported
○ Tools, platforms, languages, frameworks, …

● But often overlooked for non-static resources

Last-Modified (since HTTP 1.0)

GET /transfers

Host: www.somebank.com

Accept: text/html

…

HTTP/1.1 200 OK

Date: …

Last-Modified:

Thu, 26 Apr 2024 22:12:17 GMT

Content-Length: 1456

Content-Type: text/html

…

GET /transfers

If-Modified-Since:

Thu, 26 Apr 2024 22:12:17 GMT

Host: www.somebank.com

Accept: text/html

…

HTTP/1.1 304 Not Modified

Date: …

ETag (since HTTP 1.1)

GET /transfers

Host: www.somebank.com

Accept: text/html

…

HTTP/1.1 200 OK

Date: …

ETag: "b4bdb3-5b0-43ad74ee73ec0"

Content-Length: 1456

Content-Type: text/html

…

GET /transfers

If-None-Match:"b4bdb3-

5b0-43ad74ee73ec0"

Host: www.somebank.com

Accept: text/html

…

HTTP/1.1 304 Not Modified

Date: …

ETag: "b4bdb3-5b0-43ad74ee73ec0"

Note the double quotes:

they’re required!

ETag Calculation

● Shallow:
○ Derive full response, then hash
○ +: saves bandwith & latency
○ -: still does all the work

● Deep:
○ Determine value without deriving full

response
○ +: additional savings; don’t do all the work
○ -: harder and not always feasible

Demo

Final Comments

● Consider what mappings could
benefit from HTTP Caching
○ Shallow or deep

● Even for resources that change
frequently, caching might provide
benefits
○ E.g. if clients poll frequently for the

same resource
● Check if your clients respect the

caching headers!

Ad-hoc HTTP Client Request Logging

Logging HTTP Client Requests

● Not provided by RestTemplate/~Client
● Underlying client support not suitable

for production:

● No filtering or masking
○ Secrets, PII, cruft, …

● Always on, if enabled

Ad-hoc / Per-request Logging

● Enable logging for certain requests
only
○ Based on header

● Propagate header downstream
○ As “baggage”;

part of built-in tracing support

● Debug in production!

https://www.thoughtworks.com/radar/techniques/log-level-per-request

How To Build

● ClientHttpRequestInterceptor
implementation
○ Applies to both RestTemplate and

RestClient
○ Logs when enabled or on-demand
○ Can filter, mask, etc.

● Requires requests/responses to be
buffered

● Register using auto-configuration

Auto-configuration

Configuration classes with conditions
● Applied automatically when

containing jar is on the classpath
● Evaluated after regular

app config
○ Can be ordered

● Often provide their own
@ConfigurationProperties

Custom Auto-configuration

Very useful in your own apps
● Company-wide, or in multi-module project
● Support common patterns

○ like “local” or “test” Spring profile
● Examples:

○ Logging, HTTP client config,
metrics, security, Jackson

○ MVC: error handling, common
filters or argument resolvers, …

Demo

Actuator Autotune

Actuator Configuration Masking

● Config inspectable via Actuator endpoints
○ /env, /configprops

● Might contain secrets / sensitive values

● All masked by default
○ Configurable via property

Demo

● Older Boot versions only
masked sensitive fields
○ But no common definition of

“sensitive”
● Can do this yourself by

providing bean of type
SanitizingFunction!

Actuator Configuration Masking

Demo

Metrics Mixing

Metrics in Spring Boot

● Many built-in metrics
exposed via Micrometer
○ JVM, HTTP client/server,

thread pools, etc.
● Easy to add your own

○ Programmatically or via
annotations

Mind Your Metrics: Common Concerns

● Standard tags
○ host, service, …

● Restricting tag cardinality
○ # of possible values

● Restricting # of metrics
○ To reduce costs

● For HTTP client metrics:
ensure host is included

Demo

Coda

● There’s more to production-ready
apps than app logic

● Boot provides all you need, but
maybe not out-of-the-box
○ Don’t be afraid to tune
○ Learn what your options are!

● Build mini-frameworks for your apps
○ After all, it’s your mix!

Joris Kuipers
CTO TRIFORK AMSTERDAM

Thank you!

trifork.nl

@jkuipers, @triforkams

https://github.com/jkuipers/in-the-mix-demos

	Slide 1: It’s all in the mix!
	Slide 2: Intro
	Slide 3: Production-Ready Applications
	Slide 4: Error Handling in the Web Tier
	Slide 5: Web Error Handling
	Slide 6: ControllerAdvice & ExceptionHandler
	Slide 7: Demo
	Slide 8: Further Notes
	Slide 9: HTTP Caching
	Slide 10: HTTP Caching
	Slide 11: Last-Modified (since HTTP 1.0)
	Slide 12: ETag (since HTTP 1.1)
	Slide 13: ETag Calculation
	Slide 14: Demo
	Slide 15: Final Comments
	Slide 16: Ad-hoc HTTP Client Request Logging
	Slide 17: Logging HTTP Client Requests
	Slide 18: Ad-hoc / Per-request Logging
	Slide 19: How To Build
	Slide 20: Auto-configuration
	Slide 21: Custom Auto-configuration
	Slide 22: Demo
	Slide 23: Actuator Autotune
	Slide 24: Actuator Configuration Masking
	Slide 25: Demo
	Slide 26: Actuator Configuration Masking
	Slide 27: Demo
	Slide 28: Metrics Mixing
	Slide 29: Metrics in Spring Boot
	Slide 30: Mind Your Metrics: Common Concerns
	Slide 31: Demo
	Slide 32: Coda
	Slide 35

