
Sébastien Deleuze
https://seb.deleuze.fr

Efficient Containers with
Spring Boot 3, Java 21 and CDS

https://seb.deleuze.fr

Why do we care about runtime efficiency?

Cheaper
hosting

Sustainability Optimized
containers

Different kinds of optimizations

 Warm up
 Peak performance

available asap

 Scalability
 Same throughput

with less
resources

 Startup
 Fast startup even
on cheap servers

 Memory
 Reduced memory

consumption

Spring Boot 3 main features

Spring
Boot 3.0

Spring
Boot 3.1

Spring
Boot 3.2

Spring
Boot 3.3

GraalVM
Spring AOT

Testcontainers
Docker Compose

Virtual Threads
Project CRaC

CDS
New doc

Class Data Sharing (CDS)

Training run Optimized runapp.jsa
cache

Stop application context
before starting
Spring lifecycle

Faster startup
Lower memory
consumption

Comparing GraalVM, CRaC and CDS

Fast
startup

Fast
warm-up

Optimal peak
throughput

Memory
consumption

Compilation Compatibility
issues

Security Regular
Java

distribution

Native
with
GraalVM

Instant Instant
Training run

with
Oracle GraalVM

Reduced Heavy and
slow

Hints +
AOT bean
conditions

No but
not needed
at runtime

JVM
with
CRaC

Instant Training run No gain Fast
Complex
lifecycle
issues

Secret
leaking in
snapshots

No
Linux only

JVM
with
CDS

1.5x faster
2x with

Spring AOT

Training run
with

Project Leyden

Slightly
reduced Fast

Training run
with custom
configuration

JVM with CDS
Recommended for better efficiency with
few constraints.

Native with GraalVM
Great option if you can deal with long
build times and compatibility challenges.

Spring Boot 3.3 introduces CDS
support

Executable JAR self-extract in Spring Boot 3.3

my-app.jar
35 MB

java -Djarmode=tools
-jar my-app.jar extract my-app/ lib/

 my-app.jar
0.7 MB

Library jars as files for
optimized class loading

Application classes +
manifest file defining the
classpath.

Spring Boot 2.7 Java 8 baseline

CDS support in Buildpacks

Container image

Spring Boot
application

Paketo
Buildpacks

+ =

OS

JVM

Dependencies

Application

CDS archive

Buildpacks leverages Spring
Boot 3.3 self-extracting feature
which is CDS friendly.

The CDS training run is
performed transparently when
building the container image
with the same JVM used at
runtime!

Let’s upgrade and optimize Petclinic!
https://github.com/sdeleuze/petclinic-efficient-container

https://github.com/sdeleuze/petclinic-efficient-container

Spring Boot 2.7 Java 8 baseline

Upgrade to Java 21

Upgrade to Spring Boot 3.3

Enable Virtual Threads

Move database init to the container

Switch from Dockerfile to Buildpacks

Enable Spring AOT optimizations

Enable CDS

Configuration to prevent early database interactions
https://github.com/spring-projects/spring-lifecycle-smoke-tests/

Use regular configuration (apply to both
training and optimized runs)
or use Buildpacks
CDS_TRAINING_JAVA_TOOL_OPTIONS
environment variable for:

● Spring Data JPA
● Spring Data JDBC
● Spring Data R2DBC
● Spring Data MongDB
● Spring Data Redis
● Spring Batch
● Flyway
● Liquibase
● …

https://github.com/spring-projects/spring-lifecycle-smoke-tests/

WebJars support improvements

WebJars support improvements
https://github.com/spring-projects/spring-framework/issues/27619

https://github.com/spring-projects/spring-framework/issues/27619

Spring Boot 3 efficient container

* See spring-boot#40146 “Add support for webjars-locator-lite” currently planned for Spring Boot 3.4.x (based on Spring Framework 6.2)

Petclinic JDBC application startup time (s)
Lower is better - 2 CPUs 2G RAM

+ + + + +

Boot 2.7 baseline Boot 3.3
42% decrease

Upcoming Boot 3.4
70% decrease

https://github.com/spring-projects/spring-boot/issues/40146

Petclinic JDBC Memory consumption (MB)
Lower is better - 2 CPUs 1G RAM

-6%
-22%

-35%

Benchmarking with oha: warmup

Benchmarking with oha: peak performance

+

Petclinic JDBC throughput (req/s)
Higher is better - 2 CPUs 2G RAM

+ + + +

1392% 1370%

225% 252%

22%

CPU bound

22%22%

Petclinic JDBC template throughput (req/s)
Higher is better

Spring Boot 3.3, Java 21, virtual threads and
CDS allow you to use smaller and cheaper

instances with better performance.

Collaboration between
Java Platform and Spring teams on

Project Leyden for even faster startup
and warm-up with smaller containers!

Started PetClinicApplication in 0.298 seconds
(process running for 0.411)

Thanks!
Sébastien Deleuze

https://seb.deleuze.fr

https://github.com/sdeleuze/petclinic-efficient-container

https://seb.deleuze.fr
https://github.com/sdeleuze/petclinic-efficient-container

